

RTM AND VARTM DESIGN, OPTIMIZATION, AND CONTROL WITH SLIC

Kuang-Ting Hsiao
UD-CCM

6. AUTHOR(S)			5d. PROJECT NUMBER 5e. TASK NUMBER		
				5f. WORK UNIT NUMBER	
	ZATION NAME(S) AND AI ware Center for Cor	` /	Newark, DE	8. PERFORMING REPORT NUMB	G ORGANIZATION ER
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSOR/MONITOR'S ACRONYM(S)		
9. SI ONSOKINO/MONITO		` '			
5. SI ONSOKINO/MONITO		` '		11. SPONSOR/M NUMBER(S)	IONITOR'S REPORT
12. DISTRIBUTION/AVAII					IONITOR'S REPORT
12. DISTRIBUTION/AVAII Approved for publ 13. SUPPLEMENTARY NO	LABILITY STATEMENT ic release, distributi otes 00, Advanced Mate	on unlimited	ocessing Center: P	NUMBER(S)	e original document
12. DISTRIBUTION/AVAII Approved for publ 13. SUPPLEMENTARY NO See also ADM0017	LABILITY STATEMENT ic release, distributi otes 00, Advanced Mate	on unlimited	ocessing Center: P	NUMBER(S)	
12. DISTRIBUTION/AVAII Approved for publ 13. SUPPLEMENTARY NO See also ADM0017 contains color image	LABILITY STATEMENT ic release, distributi otes 00, Advanced Mate	on unlimited	ocessing Center: P	NUMBER(S)	
12. DISTRIBUTION/AVAII Approved for publ 13. SUPPLEMENTARY NO See also ADM0017 contains color imag 14. ABSTRACT 15. SUBJECT TERMS	LABILITY STATEMENT ic release, distributi otes 00, Advanced Mateges.	on unlimited		NUMBER(S)	e original document
12. DISTRIBUTION/AVAIL Approved for publ 13. SUPPLEMENTARY NO See also ADM0017 contains color image 14. ABSTRACT	LABILITY STATEMENT ic release, distributi otes 00, Advanced Mateges.	on unlimited	ocessing Center: P 17. LIMITATION OF ABSTRACT	NUMBER(S)	

Report Documentation Page

Form Approved OMB No. 0704-0188

The Resin Transfer Molding (RTM) Process

The Vacuum Assisted Resin Transfer Molding (VARTM) Process

Governing Equations for RTM Flow Simulations

Darcy's Law

Volume averaged velocity-pressure relationship for flow in porous media:

$$u_i = -\frac{K_{ij}}{\mathbf{m}} \frac{\partial P}{\partial x_j}$$

$$\frac{\partial}{\partial x_i} \left(\frac{K_{ij}}{\mathbf{m}} \frac{\partial P}{\partial x_j} \right) = 0$$

Continuity equation for the Resin

$$\frac{\partial u_i}{\partial x_i} = 0$$

Resin injection

$$P = P_{\text{inj}}$$

$$Q_{\text{inj}} = -\frac{A}{m} \left(K_{nn} \frac{\partial P}{\partial n} + K_{nt} \frac{\partial P}{\partial t} \right)$$

Simulation-based Liquid Injection Control: Philosophy

Features of SLIC

Permeability

SLIC

Layout of Flow Runners and Flow Distribution Media

Case 1: Optimize Gate and Vent Locations

Length=1.50m Width=1.00m Height=0.20m

Injection Gate

Thickness = 0.01m

 $Kxx = Kyy = 1E-10 \text{ m}^2$

Vf=0.5

Resin Viscosity = 0.12 Pa-sec = 120 cps

Injection Pressure = 3.03E+5 Pa Vent Pressure = 1.01E+5 Pa

Available Features of SLIC	Features Used
Gate(s) & Vent(s) Design	×
Flow Distribution Network Design	
Mold Filling Monitoring & Online Characterization of Permeability/Volume Fraction Online Mold Filling Flow Control	

Flow of Optimizing Gate(s)/Vent(s) with SLIC (Case 1)

Mesh (part.dmp)

Gate/Vent Candidates

Constraints and Cost Function f=f(Equip.Cost, Filling Time, Dry Spot)

NOTE: The following section defines the MAX_FROCESSING_TIME < Resin Gel Time.

MAX_FROCESSING_TIME: 1800.00

NOTE: The following section is to diffinte the pressures.

INDECTION_PRESSURE: 5.05E5

VENT_PRESSURE: 1.01E7

NOTE: The following section is for Performance evaluation definition.

NOTE: The following section is for Performance evaluation definition.

NEGINT_DF_CONTO._DELINES: 0.010000

NOTE: The following section is for Designing Initial Injection Gates & Initial Vent Gates

NUMBER_DF_INITIAL_VENT_LIKES: 1

NOTE: The following section is for Designing Initial Injection Gates & Initial Vent Gates

NUMBER_DF_INITIAL_VENT_LIKES: 2

NOTE: The following section is for Flow Control Design.

NUMBER_DF_AUDILIARY_LIKES: 2

Available Features of SLIC	Features Used
Gate(s) & Vent(s) Design	×
Flow Distribution Network Design	
Mold Filling Monitoring & Online Characterization of Permeability/Volume Fraction	
Online Mold Filling Flow Control	

10 10 0.01 0.2 100000

Select Desired Feature

Use Corresponding Macro (Either SLIC Default or

User Defined)
© 2003 University of Delaware All rights reserved

SLIC

Case 2: A VARTM/Co-Cure Case Study

How to optimize the distribution network design?

Experimental Setup (for Case 2)

Mirrors at 45° to allow a camera to monitor the flow on the top and bottom Simultaneously.

Frame to press the ribs over the fabrics

Acrylic ribs

Acrylic bottom plate (mold tool)

Trial and Error – 1 (for Case 2)

Fill Time ~ 19 min

Trial and Error – 2 (for Case 2)

Trial and Error 4 - Expert Guess (for Case 2)

Procedure – Optimizing Distribution Layers and Runner Channels with SLIC

- 1. Create Finite Element Mesh (Geometry) of the composite part.
- 2. Collect Permeability/Fiber Volume Fraction of the Preform.
- 3. Characterize the Permeability of the Distribution Media by using SLIC.
- 4. Calculate the Effective Permeability of the Flow Runner Channels.
- 5. Use SLIC to optimize the placement of Distribution Media and Flow Runner Channels.

Run an experiment to verify the design.

Case 2: A VARTM/Co-Cure Case Study

Distribution Layer Permeability Measurement with SLIC

12 Experiments were conducted, the permeability ratio was obtained as 20-40.

Flow Distribution Network Design by SLIC

Intuitive (Trial-and-Error) Design vs. SLIC's Design

Number of distribution media layer

Point

Very small final dry spot

Simulations

Experimental results (mirrored images)

Processing time

Final (fourth) intuitive design

SLIC's design

	Dry spot	Fill time	Number of
	content		experiments
Trial-and-error intuitive design	0.851%	10.87 min	4
GA/simulation-based design (SLIC)	0.034%	13.05 min	1

Case 3: A VARTM Case Study

Gate Vent **D:** Distribution Media

L: Flow Runner

h₀: Thickness of 1-ply distribution media

A₀: Cross-section Area of reference Flow Runner

Design 1

Design 2

D1=D2=	D3:	h = 4	$+ h_0$

	Design 1	Design 2	Deign 3
SLIC Gates/Vents Optimization	Yes	No	No
SLIC Flow Distribution Network Optimization	Yes	Yes	No
Fill Time	28min	1hr 08min	1hr 38 min
Number of Empty Nodes/Number of Nodes	0/948	0/948	4/948

L2: $A = 2^{-1} A_0$

Case 4: Steps on a Boat Deck (VARTM with Flow Runners)

	Design 1	Design 2	Design 3
SLIC Gates & Vents Optimization	Yes	Yes	Yes
Number of Gates	3	2	1
Number of Vents	4	2	1
Fill Time Without Flow Runner	6min	15min	1hr
SLIC Flow Runner Optimization	Yes	Yes	Yes
Fill Time With Flow Runners	2min	14min	12min

Permeability Variations

- ✓ •Injection Pressure/Port
- ✓ •Vent Pressure/Port
- ✓ •Resin Viscosity
 - •Fiber Volume Fraction
 - •Permeability of the the Preform

LIMS

Characterization Challenges!

K and $\boldsymbol{V_f}$ Change due to the Compaction Variation in VARTM

Case 4: Using SLIC to Characterize the Racetracking

Five different operators A, B, C, D and E run 10 experiments each. A, B, C and D cut the fabrics by hands, E used a laser cutter.

Streamlined Flow Monitoring & Control - From Design To Automation

Developing Flow Sensing/Control System with SLIC

SLIC

Flow of Automation

Simulation-based Liquid Injection Control (Intelligent Design Software)

Case 5: Online Flow Sensing/Control with SLIC

Experiment Preparation (for Case 5)

ĪIL_2

AG: Auxiliary gate IIL: Initial injection line

Case 6: Online Flow Monitoring & Control with SLIC

TekscanTM Sensor Area (Pressure Grid Film)

Available Features of SLIC	Features Used
Gate(s) & Vent(s) Design	
Flow Distribution Network Design	
Mold Filling Monitoring & Online Characterization of Permeability/Volume Fraction	x
Online Mold Filling Flow Control	×

arrival times t_0, t_1, t_2, t_3, t_4 are all collected

Disturbance Mode 29 is selected from the Database customized control action for Mode 29

IG1

Initial injection gate (IG) with flow runner

Fixed vent 🖈

Auxiliary gate (AG) ⊗

Disturbance detection sensor (DS)

Control action trigger sensor (CS) ▼

Control action Mode 29 is taking place.

- **IG2** CS1 >>> Close IG2
 - CS2 >>> Open AG1
 - CS3 >>> Close IG1
 - Vent Sensor >>> Close All Gates.

Successful injection

Summary

SLIC

AUTOMATED DESIGN

- Selection of Initial Gate and Vent Locations
- Optimization of the Flow Distribution Network
- Online Flow Sensing/Permeability Characterization System Design
- Creation of Online Flow Control Solution

Advantages of developing RTM/VARTM with SLIC

- Rapid design for RTM/VARTM.
- Less cost for process development.
- Reliable and comprehensive mold filling solution.
- Advanced flow monitoring/control technology provides the opportunity to elevate the part quality and reduce the cycle time.

Acknowledgements

- Professor Suresh G. Advani
- Ms. Delphine Coatleven
- Mr. Mathieu Devillard
- Ms. Susanna Laurenzi
- Mr. Dhiren Modi
- Mr. Yeshwanth Rao .K. Naveen
- Dr. Pavel Simacek
- Office of Naval Research (ONR)